
Attacking IoT Devices
from Web Perspective

Simone Onofri & Donato Onofri

CC BY-ND-NC

Introduction

Introduction
We will analyze and attack an IoT device the Travel Router,

the GLINET Shadow firmware version 3.25.

CVE-2023-31471 - Abuse of Functionality leads to RCE

CVE-2023-31473 - Arbitrary File Read

CVE-2023-31474 - Directory Listing

CVE-2023-31477 - Path Traversal

IOT Security
We think of IOT Devices as or things connected to the internet, making them smart

and impacting the physical world. So, we mention doors, kettles, power sockets, and

things that impact larger systems – say, “industrial” systems – to control production

cycles, turbines, dams, and other such things.

We can summarize in words attributed to Tim Kadlec:

“The S in IoT stands for security".

How to analyze IoT Devices

The IoT devices, despite their variety, can be broken down into common

elements for analysis: Physical components, firmware, network services, mobile

applications, cloud interaction, and communication interfaces. Each layer offers

unique insights for security and functionality assessment.

Multi-Layered Analysis

• Physical Components Analysis
• Examine outer device for model name, default settings, serial codes.
• Disassemble to study circuits, chips, and other hardware components.

• Firmware Analysis
• Reverse-engineer to find source code, process flow, and hardcoded passwords.

• Network/Web Services
• Examine TCP/IP services like Web Apps (our focus today), uPNP, telnet, SSH, etc.

• Mobile Applications
• Reverse engineering to find URLs, passwords, and operating logic.

• Cloud
• Understand how data is processed and stored in third-party servers.

• Communication Interfaces
• Analyze network traffic and protocols like Bluetooth, ZigBee, NFC, etc.

How we found and exploited
an IoT device

Basic Physical analysis

Useful info from the device

Apart from common information such
as the Model, IP, SSID, Key MAC
address, Serial number and DDNS, in
particular when analyzing strange
devices the FCC ID (the device ID
registered with the United States
Federal Communications
Commission), IC (Integrated Circuit)

and CMIIT ID ((the China Ministry of

Industry and Information Technology

identifier) are useful.

Firmware Analysis

Once we know the device’s name, we can determine the steps required to
download its firmware. This process can vary in complexity.

Extracting the firmware after disassembling the device.

Intercepting the traffic during the update.

Download it from the vendor’s website.

However, some vendors may require registration, proof of ownership, or
provide it encrypted.

Downloading the firmware

$ wget https://fw.gl-inet.com/firmware/ar300m/v1/openwrt-
ar300m16-3.215-0921-1663732630.bin
--2023-03-11
03:51:43-- https://fw.gl-inet.com/firmware/ar300m/v1/
openwrt-ar300m16-3.215-0921-1663732630.bin
[…]
openwrt-ar300m16-3.
100%[===================>] 12.00M 32.6MB/s in
0.4s
2023-03-11 03:51:44 (32.6 MB/–) - 'openwrt-
ar300m16-3.215-0921-1663732630.bin' saved [12583240/12583240]

Extracting the firmware

$ sudo docker run -v $(pwd):/samples cincan/binwalk -e --preserve-symlink --directory
/samples /samples/openwrt-ar300m16-3.215-0921-1663732630.bin
DECIMAL HEXADECIMAL DESCRIPTI--
0 0x0 uImage header, header size: 64
bytes, header CRC: 0xEA36D5D3, created: 2021-07-29 19:50:28,
image size: 1889054 bytes, Data Address: 0x80060000, Entry
Point: 0x80060000, data CRC: 0xDE40A88D, OS: Linux, CPU: MIPS,
image type: OS Kernel Image, compression type: lzma, image nam":
"MIPS OpenWrt Linux-4.14."41"
150
64 0x40 LZMA compressed data, properties:
0x6D, dictionary size: 8388608 bytes, uncompressed size: 5989406
bytes
1900544 0x1D0000 Squashfs filesystem, little
endian, version 4.0, compression:xz, size: 10651672 bytes, 3237
inodes, blocksize: 262144 bytes, created: 2022-09-21 03:57:09

Looking at extracted files

$ ls _openwrt-ar300m16-3.215-0921-1663732630.bin.extracted/squashfs-root
bin dev etc lib mnt overlay proc rom root sbin sys tmp
usr var www

As we explored the system, we came across a few intriguing directories. Since

we are focusing on web applications, we are particularly interested in the www

directory.

This directory will be helpful for us to browse when we connect via a web

browser, which will assist us in our attacks.

Emulation
Since our goal is to test the web application exposed by the router, we can try to
emulate just the binary that manages the web server – IoT devices have limited

resources, so a few binaries often manage the web server.

lighttpd (and others we will see later) is in the /usr/sbin/ directory.

One of the best tools to emulate a binary is QEMU

Prepare qemu

$ sudo apt install qemu-user-static
$ cd _openwrt-ar300m16-3.215-0921-1663732630.bin.extracted/squashfs-root/
$ cp /usr/bin/qemu-mips-static ./
$ ll
total 4468
drwxrwxr-x 16 user user 4096 mar 16 12:58 ./
drwxr-xr-x 3 user user 4096 mar 16 08:05 ../
drwxr-xr-x 2 user user 4096 sep 21 05:56 bin/
drwxr-xr-x 2 user user 4096 mar 16 11:13 dev/
drwxrwxr-x 31 root root 4096 may 13 2021 etc/
drwxrwxr-x 12 user user 4096 jul 29 2021 lib/

[...]
-rwxr-xr-x 1 user user 4491296 mar 16 08:06 qemu-mips-static*
[...]
drwxr-xr-x 2 user user 4096 mar 16 08:03 sbin/
lrwxrwxrwx 1 user user 3 sep 21 05:56 var -> tmp/
drwxr-xr-x 4 user user 4096 jul 29 2021 www/

First try

$ sudo chroot ./ ./qemu-mips-static /usr/sbin/lighttpd
2023-03-16 21:37:32: (server.c.1037) No configuration available.
Try using the -f option.

Then, we want to execute the qemu-mips emulator (the target architecture is

MIPS 32-bit, which is easy to check with the file command) and chroot to the

target filesystem (so that we have the correct path to load the firmware

libraries)

Second try

$ sudo chroot ./ ./qemu-mips-static /usr/sbin/lighttpd -f
/etc/lighttpd/lighttpd.conf
2023-03-16 21:39:30: (configfile.c.1160) opening
configfile /etc/lighthttpd/lighthttpd.conf failed: No such file or
directory

It looks like the executable is running, but it needs a configuration file. Searching

squashfs we found a possible configuration file under

/etc/lighttpd/lighttpd.conf. Let’s retry the execution

Third try

$ sudo chroot ./ touch /dev/null
$ sudo chroot ./ ./qemu-mips-static /usr/sbin/lighttpd -f /etc/
lighttpd/lighttpd.conf
failed to execute shell: /bin/bash -c cat /etc/lighttpd/ conf.d/*.conf: No such
file or directory
2023-03-16 21:44:00: (server.c.1157) opening pid-file failed:
/var/run/lighttpd.pid No such file or directory
2023-03-16 21:44:00: (server.c.416) unlink failed for: /var/run/lighttpd.pid 2 No
such file or directory

For the other errors, since /dev/null is not present on the extracted filesystem,

we need to create it (touch /dev/null) and execute it again:

Fourth try

$ sudo chroot ./ mkdir /var/run
$ sudo chroot ./ ./qemu-mips-static /usr/sbin/lighttpd -f
/etc/lighttpd/lighttpd.conf
failed to execute shell: /bin/bash -c cat /etc/lighttpd/
conf.d/*.conf: No such file or directory
daemonized server failed to start; check the error log for details

Let’s create the /var/run directory and try again:

Fifth try

$ sudo chroot ./ cat /etc/lighttpd/lighttpd.conf | grep cat
include_shell "cat /etc/lighttpd/conf.d/*.conf"
$ sudo chroot ./ ls /etc/lighttpd/conf.d/
30-access.conf 30-cgi.conf 30-expire.conf 30-fastcgi.
conf 30-openssl.conf 30-proxy.conf

On reading all the .conf files under /etc/lighttpd/conf.d/, we can see that only one
error is left now, and the problem seems related to the execution of cat.
By checking the lighttpd.conf file, we can see that the error seems to be related to a
specific line of the configuration, which triggered the cat command to read and
include all the .conf files in that directory and include them manually.

Sixth try

include "/etc/lighttpd/conf.d/30-access.conf"
include "/etc/lighttpd/conf.d/30-cgi.conf"
include "/etc/lighttpd/conf.d/30-expire.conf"
include "/etc/lighttpd/conf.d/30-fastcgi.conf"
include "/etc/lighttpd/conf.d/30-openssl.conf"
include "/etc/lighttpd/conf.d/30-proxy.conf"

Modify (religious choice: vi or nano) the chrooted /etc/lighttpd/lighttpd.conf file

while commenting the include_shell line and adding the files manually, looking

at the /etc/lighttpd/conf.d/ directory:

And run again
$ sudo chroot ./ ./qemu-mips-static /usr/sbin/lighttpd -f /etc/lighttpd/lighttpd.conf
daemonized server failed to start; check the error log for details

Seventh try

$ sudo chroot ./ mkdir /var/log
$ sudo chroot ./ mkdir /var/log/lighttpd
$ sudo chroot ./ ./qemu-mips-static /usr/sbin/lighttpd -f
/etc/lighttpd/lighttpd.conf

In terms of the logs, their folder is missing, so create it and re-run the code

again:

There’s no error this time. Let’s use netstat to check for new services listening

on ports
$ sudo netstat -anp | grep qemu
tcp 0 0 0.0.0.0:80 0.0.0.0:*
 LISTEN 7685/./qemu-mips-st
tcp 0 0 0.0.0.0:443 0.0.0.0:*
 LISTEN 7685/./qemu-mips-st

Emulated web server

It works now, but something

still doesn’t add up: it doesn’t

load the router image. Trying

to create the user, we receive

an HTTP error, 500.

We know that

/www/cgi-bin/api is the

binary that manages the

APIs…

Let’s call the Dragon

• Open the /www/cgi-bin/api file with Ghidra
• Search among the strings (Search | For Strings) for initpwd
• Click on the location to see the code
• Click on its cross-reference (get_internal_api_dispatcher:0042cacc).
• We can see a reference of the function that’s responsible for the

password initialization, router_init_root_pwd, at the 0042cb28
address, and decompile it

UCI

• As we can see, these requests are performed using the UCI (Unified
Configuration Interface) API, the framework that centralizes device
configuration on OpenWrt.

• We can observe that the configuration is stored in files under the
/etc/config/* directory by reading the UCI documentation.

• Specifically, in this case, the program checks for the glconfig

configuration (glconfig. general.password and

glconfig.general.model),

UCI API from qemu

$ sudo chroot ./ ./qemu-mips-static /bin/sh
BusyBox v1.30.1 () built-in shell (ash)
/ # uci show glconfig
glconfig.general=service
glconfig.general.port='83'
glconfig.ddns=service
[...]
glconfig.autoupdate.enable='0'
glconfig.samba=service
glconfig.samba.read_only='yes'
glconfig.openvpn=service
glconfig.openvpn.enable='0'
glconfig.openvpn.force='0'
glconfig.repeater=service
glconfig.repeater.autoconnect='1'
/ #

Edit parameters and restart

look at the actual configuration settings from the booting vendor’s script
$ cat /lib/functions/gl_util.sh
config service 'general'
 option port '83'
 option model 'ar300m'
 option factory_mac '00:11:22:33:44:55'
 option language 'EN'

to write down the configuration

$ vi /etc/config/glconfig

kill the old process, then restart

$ sudo chroot ./ ./qemu-mips-static /usr/sbin/lighttpd -f
/etc/lighttpd/lighttpd.conf

Web Application Analysis

Looking into previous research

When searching for vulnerabilities on a new target, we always look for previous

vulnerabilities. In addition to using our favorite search engine, we also check

the release notes for any available information.

Previous version was affected by Command Injection, and a fix filtering suitable

characters such as | $ () ` %0a was implemented correctly.

Finding another way
to execute code

When 'pure' Command Injections are fixed, we can abuse the calls to OS
Commands, by exploiting the parameters and functionalities of the binaries being

called.
This can be achieved through Abuse of Functionality or Parameter Injection.

..such as “Install Plugins” functionality.

Decompiling the API again…

previous fix!

Decompiling opkg…

another vuln! :(

Confirm that opkg executes the
package

Let’s see how we can install *our*
package

$ python3 -m http.server 8888
Serving HTTP on :: port 8888 (http://[::]:8888/) ...
::ffff:192.168.8.1 - - [13/Mar/2023 23:27:25] "GET / HTTP/1.1"
200 -
^C
Keyboard interrupt received, exiting.

$ python3 -m http.server 8888
Serving HTTP on :: port 8888 (http://[::]:8888/) ...
::ffff:192.168.8.1 - - [13/Mar/2023 23:27:25] "GET / HTTP/1.1"
200 -
^C
Keyboard interrupt received, exiting.

Abusing Regular Expressions and
Injecting Parameters

Recap
We found that the Web Application let us to force to install (by abusing the opkg
binary) a malicious ipk package from an arbitrary location, and then execute that

by specifying the execution command in the postinst script.

What we need:
1. create a ipk (we’ll develop a reverse shell Backdoor)
2. put the execution in the postinst script
3. setup a listener for the reverse shell
4. enjoy

Bonus:
● Directory Listing
● Arbitrary File reading

All this stuff executed with root permission!

Creating the backdoor for OpenWrt
to create our backdoor, we first need the C code of what we need - for
example, a reverse shell - and then to put it inside an ipk package - the

format of opkg. To do this, we created a docker with the toolchain -
available in the book's repository - to facilitate its creation.

PoC Time!

https://docs.google.com/file/d/1E5HnbRrtVX9a7T1dbud2fjF2XF5bzncv/preview

Grazie

